
Utilizing Large Language Models for Indoor Tour Guidance
Zhiqiang Jiang

zhiqiang.jiang@ucalgary.ca
University of Calgary

Calgary, Canada

Isaac Huang
isaac.huang@uwaterloo.ca
University of Waterloo

Waterloo, Canada

Xin Wang∗
xcwang@ucalgary.ca
University of Calgary

Calgary, Canada

ABSTRACT
Most indoor venues depend heavily on human tour guides or infor-
mation desk staff for indoor tour guiding services due to the lack of
efficient and effective representation of indoor layouts, support for
dynamic tour requests and natural language interaction. This pa-
per addresses the challenges of indoor tour guiding by using large
language models (LLMs) to automate three core tasks: pathfinding,
tour planning, and tour Q&A through the introduction of Indoor-
Roaming, an LLM-based indoor tour guidance system. This system
leverages an Indoor Entity Graph to bolster LLMs’ precise com-
prehension of indoor environments. It integrates a State-Driven
Dynamic Planning method for interactive and adaptive tour plan-
ning. Additionally, IndoorRoaming employs an Object Labelling
Workflow to enhance the multi-modal capabilities of LLMs, en-
abling them to handle tour visual question-answering tasks more
effectively. Instruction tuning and fine-tuning of LLMs are designed
to align with the system functions, producing indoor tour guidance
comparable to that of human tour guides. The performance of In-
doorRoaming has been evaluated through extensive testing in a
large shopping mall (CF Market Mall) and a museum (Studio Bell
Museum). A quantitative user study demonstrates the effectiveness
of IndoorRoaming in terms of accuracy, generation quality, and
user satisfaction across all implemented tasks.
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1 INTRODUCTION
Most indoor venues rely on human tour guides or information desk
staff to support indoor tour guiding services due to the limitations of
indoor GPS positioning [2] and the absence of standardized indoor
mapping system [7]. A tour guide or information desk staff is able
to adequately fulfill the indoor guiding service without depending
on any indoor positioning or digital map because of familiarity
with the venue spatial environment and guiding information.

Large language models (LLMs), such as ChatGPT [11], Gemini
[6] and LLaMA [10], with their profound capacity for natural lan-
guage understanding, context-awareness, generative abilities, and
multilingual support, have the potential to provide a user-friendly
interactive tour experience for visitors. The goal of this paper is to
develop an LLM-based indoor tour guidance system that employs
large language models to handle three core tasks – pathfinding,
tour planning, and tour question-answering – within the context
of indoor tourism environments such as museums and shopping
malls. However, there are a few challenges:

Firstly, the pathfinding task presents a significant hurdle for
an LLM-based tour guide system, as it requires a comprehensive
understanding of the indoor venue’s topology, the ability to identify
the shortest path, and the generation of accurate and coherent
route guidance language. While LLMs possess remarkable natural
language processing capabilities, they require additional support to
fully comprehend the intricate spatial relationships and topological
structures of indoor environments.

Secondly, the tour planning task involves recording andmaintain-
ing a recommended tour plan, including both routes and accompa-
nying commentary. Specifically, the task needs to track the progress
of the tour plan, generating relevant commentary at each step, and
dynamically modify subsequent portions of the plan based on visi-
tor inputs or preferences. Developing a computational model that
can support an LLM-based system in implementing these functions
coherently and responsively remains a a formidable undertaking.

Thirdly, the tour Q&A task necessitates the ability to learn
domain-specific knowledge and engage in interactive question-
answering sessions with visitors. While multimodal large language
models (MLLMs), such as LLaVA[3][4], excel in acquiring both
textual and visual domain knowledge, they require additional sup-
port to handle visual tour Q&A interactions effectively, particularly
when dealing with clear spatial references. One key challenge in
this task is the accurate detection and labeling of objects to address
spatial reference issues in visual Q&A scenarios. Despite remark-
able progress in computer vision and natural language processing,
enabling MLLMs to seamlessly integrate spatial information from
visual inputs and provide visitors with precise responses remains a
significant challenge.

In this paper, an LLM-based tour guidance system called Indoor-
Roaming, is proposed to support the implementation of the three
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core tasks outlined above. Our main contributions are summarized
as follows:
• To enable LLMs to accurately comprehend indoor topology
and generate precise pathfinding instructions, we introduce
the Indoor Entity Graph. This graph serves as the founda-
tion for LLMs to infer the shortest path and generate natural
language route guidance for the pathfinding task. The In-
door Entity Graph comprises detailed node representations
for various indoor entities, as well as edge representations
that capture both visible corridors and strategic connections
within the indoor space. Furthermore, the graph incorporates
turn representations that explicitly denote the directions re-
quired at intersections, enhancing LLMs’ ability to provide
clear and accurate pathfinding instructions to visitors.
• We introduce the State-Driven Dynamic Planning method to
enable LLMs to accurately perform the indoor tour planning
task. This method represents each Point of Interest (POI) as
an independent state, treating visitor movements as tran-
sitions between these states. By maintaining a state-based
representation of the tour plan, the method allows LLMs to
generate contextually relevant commentary and modify the
subsequent portions of the tour route in response to visitor
inputs or preferences, facilitating a seamless and adaptive
indoor tour experience.
• To address the spatial reference challenges in visual tour
Q&A interactions with visitors, we have designed an Object
Labeling Workflow for MLLMs. The workflow integrates an
additional object detection model and dynamically adjusts
object labels based on visitor inquiries, ensuring the accu-
racy and relevance of object identifications. This adaptive
labeling process is crucial for answering queries that require
a comprehensive understanding of the spatial arrangement
of elements within a visual input. It enables MLLMs to pro-
vide precise and contextually relevant responses during the
tour Q&A sessions.
• We evaluated IndoorRoaming to assess its performance in
providing indoor tour guidance services for a large shop-
ping mall and a museum, demonstrating the great promise
of IndoorRoaming for application in real-world scenarios.
Our results show that IndoorRoaming effectively enhances
visitor experiences through accurate guidance and tailored
information dissemination

The remainder of this paper is organized as follows: Section 2 dis-
cusses the related work. Section 3 introduces the system overview
and our methodology on each task. Section 4 provides our case stud-
ies of the IndoorRoaming implementation. Section 5 evaluates the
effectiveness of these initiatives. Section 6 closes with a conclusion
and future work.

2 RELATEDWORK
Limited research works have been conducted using LLMs in spatial
systems. MapGPT [12] supports existing outdoor digital maps ser-
vice to generalize across complex query intents and invoke suitable
chains of digital maps services. It focuses on how LLMs support
outdoor digital map services in understanding user query intents.
However, MapGPT does not target the indoor environment where

GPS positioning and digital map services are unavailable. There
is one notable research reference using LLMs to understand map
spatial information: the standout AI experiment, Stanford Smallville
[8]. This paper clearly elaborates that Smallville sandbox environ-
ment is represented and operates as a tree data structure with the
Node and Edge relationship. Although the Stanford Smallville re-
search focuses on the interactive simulation of human behavior
with LLMs, the experiment proves that LLMs is able to learn map
spatial relationship if its topology, distance, and direction are all
clearly defined with a computational model. However, the experi-
ment is performed in a game environment without any real-world
implementation. Another important spatial-related LLMs research
field is robotic navigation and autopilot. The work by Dorbala et
al. [9] explores how LLMs generate wayfinding instructions based
on the egocentric images taken by embodied robot along indoor
paths, which inspires us to extend our IndoorRoaming to support
indoor embodied robot hardware as future work.

3 METHODOLOGY
3.1 System Overview

Figure 1: IndoorRoaming System Overview

Figure 1 shows the overview of the proposed IndoorRoaming
system. The system comprises two primary LLM-based components:
task classifier and function units. The indoor tour task classifier
leverages LLMs to categorize visitor inquiries into one of three core
tasks: pathfinding, tour planning, or tour Q&A. By understanding
the visitor’s intent, this module routes the inquiry to the appropriate
function units. The LLM-based function units handle the specific
requirements of each core task.
• Pathfinding Task: The proposed Indoor Entity Graph en-
ables LLMs to learn the indoor topology of a venue. Then
IndoorRoaming can find the shortest path and generate de-
tailed textual road guidance for visitors’ pathfinding request.
• Tour Planning Task: The task tracks a recommended in-
door tour plan and dynamically generates commentary tai-
lored to the visitor’s interests and interactions. The proposed
State-Driven Dynamic Planning (SDDP) method enables In-
doorRoaming to adjust the tour plan on the fly, providing a
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responsive and engaging visitor experience. When a visitor
requests a route change or poses a question during the tour,
IndoorRoaming uses the function units of Pathfinding or
Tour Q&A to meet the visitor’s needs and preferences.
• Tour Q&A Task: This task enriches the visitor experience
by providing detailed responses to any visitor questions
about the indoor tour. The Textual Q&A function unit sup-
ports inquiries about indoor general information. Detailed
visual information about Region of Interest (ROI) learned
by MLLMs is handled by the Visual Q&A function unit and
an integrated object detection model, ensuring clear spatial
referencing.

In the following, we will discuss each task in detail.

3.2 Pathfinding Task
The pathfinding task requires accurately describing the indoor path
from point A to point B. To assist LLMs in understanding indoor
layout, we propose an Indoor Entity Graph including Nodes, Edges
and Turns to represent the spatial entities, their topological and
distance relationships.
Definition 1 (Indoor Entity Graph): An indoor entity graph𝐺 is
an ordered triple 𝐺 = (𝑁, 𝐸,𝑇 ), where
• 𝑁 represents a set of units represent indoor location enti-
ties such as rooms, stores, exhibitions or general any indoor
object of interest. Besides, intersections of corridors are re-
garded as landmark type of nodes in an indoor entity graph.
Each node has attributes including its ID, name, type, located
corridor, distances to both start and end intersection nodes
of the located corridor, and the side on its Corridor accord-
ing to the direction from start to end node. Specifically, N is
represented as:

𝑁 = {𝑛𝑖 | 𝑛𝑖 = (𝑖𝑑, 𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒, 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟, 𝑠𝑖𝑑𝑒,

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑟𝑡, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐸𝑛𝑑)} (1)

• 𝐸 represents a set of connections between nodes. Note that
every edge is bidirectional. Moreover, edges include not only
all connections between intersection nodes, which are visi-
ble corridors on the indoor map, but also two connections
from each node to the start and end intersection nodes of
its located corridor, which are invisible on the indoor map.
Specifically, E is represented as:

𝐸 = {𝑒𝑘 | 𝑒𝑘 = (𝑖𝑑, 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒, 𝑒𝑛𝑑𝑁𝑜𝑑𝑒, 𝑙𝑒𝑛𝑔𝑡ℎ)} (2)

• 𝑇 represents as set of turning directions at each intersection
node. For a directional path, each turn item includes the pre-
vious edge, the next Edge, and the turning direction from the
previous Edge to the next Edge. Specifically, T is represented
as:

𝑇 = {𝑡 𝑗 | 𝑡 𝑗 = (𝑖𝑑, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐸𝑑𝑔𝑒, 𝑛𝑒𝑥𝑡𝐸𝑑𝑔𝑒, 𝑡𝑢𝑟𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)} (3)

Each edge links two nodes, and each turn is associated with
transitions between edges, essential for defining movement paths.
Given a source node s and a destination node t, the goal of the
pathfinding task is to find the shortest path P* from s to t.

𝑃∗ = arg min
𝑃∈P(𝑠,𝑡 )

(𝐷 (𝑃) =
∑︁
(𝑢,𝑣) ∈𝑃

𝑑 (𝑢, 𝑣)) (4)

, where P(𝑠, 𝑡) represents all possible paths from source 𝑠 to target
𝑡 . 𝐷 (𝑃) represents the total distance of a path 𝑃 . 𝑑 (𝑢, 𝑣)represents
the distance of each segment along the path from start to finish.

Figure 2: Prompt Example for Pathfinding Task

To ensure IndoorRoaming provides pathfinding guidance akin to
a human tour guide, instruction tuning prompts are designed. The
prompt templates and techniques are presented in Figure 2. The
prompt typically includes a task description with role definition,
context-based constraints, followed by a few examples for few-shot
learning. This structure helps the model understand the context
and apply its learned capabilities to similar new tasks. Chain-Of-
Thought technique is applied to enhance the interpretability and
logical reasoning by breaking down the whole task into three steps:
• The first prompt directs the LLM to extract the indoor topol-
ogy information from an uploaded JSON file and build an
indoor entity graph for a venue, such as a shopping center
as shown in Figure 4. It specifically instructs the addition of
extra edges to construct a complete indoor entity graph.
• The second prompt requests the calculation of the shortest
route within the created indoor entity graph, demonstrat-
ing the practical application of the shortest path searching
algorithms such as Dijkstra.
• The third prompt starts with task description with the role
definition for LLMs, such as placing the LLM in the role of
an information desk staff member at a shopping center, and
asking to provide friendly road guidance based on the gener-
ated shortest route. The context-based constraints guides the
LLM to interprete the graph data to provide actionable in-
structions, simulating a real-world customer service scenario.
The few-shot example format provided emphasizes preci-
sion and attention to detail, which are crucial for effective
communication in pathfinding tasks.
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3.3 Tour Planning Task
A typical tour plan includes a designated route through multiple
Points of Interest (POIs), accompanied by specific commentary for
each POI. Indoor venues, such as museums, usually offer a recom-
mended tour plan, which the indoor tour guide can adjust based
on visitor requests during the tour. To enable LLMs to adapt the
tour route and corresponding commentary changes, we propose
the State-Driven Dynamic Planning (SDDP) method. This method
helps LLMs track tour progress and make adjustments to the route
or commentary, while maintaining coherence with the existing
plan. In the indoor scenario of a museum, nodes of indoor entity
graph represent POIs. In the SDDP method, each POI is considered
an independent state, and the visitor’s movements from one POI
to another are perceived as transitions between states. Any route
changes requested by the visitor can be implemented by adding
the necessary transitions and removing obsolete ones on the fly.
Additionally, the SDDP method supports entry-state action defini-
tion, allowing the tour commentary for each POI to be dynamically
generated based on the visitor’s feedback regarding their interests
and preferred commentary content.

The SDDP method process is defined with a tuple (S, V, 𝛿 , C) and
Algorithm 1:
• 𝑆 is the set of states such as POIs, with 𝑠0 being the initial
state such as the museum entrance or lobby, and 𝑠𝑓 as the
final state such as the museum exit.
• 𝑉 is the set of visitor inputs, with𝑉0 including initial require-
ments such as tour duration, language, and commentary
content, which can be changed during the tour.
• 𝛿 : 𝑆 ×𝑉 → 𝑆 is the state transition function dependent on
visitor input.
• 𝐶 : 𝑆 ×𝑉 → Text is the dynamic commentary function.

Algorithm 1 Dynamic Tour and Commentary Adjustment (SDDP)
Require: Tour Plan initial state 𝑠0, final state 𝑠𝑓 , Visitor’s initial

input 𝑉0, model components ⟨𝑆,𝑉 , 𝛿,𝐶⟩
𝑉 ← 𝑉0
Counter← 0
𝑠 ← 𝑠0
while 𝑠 ∉ 𝐹 do

Commentary← 𝐶 (𝑠,𝑉 ) {Generate commentary based on cur-
rent state and visitor input}
Present Commentary to Visitor and Collect Feedback
𝑉 ← Update visitor inputs
if there is a request for change in route then
updateTransition(𝑠, 𝑠′)
𝑠′ ← 𝛿 (𝑠,𝑉 ) {Determine next state based on updated route}

end if
Counter← Counter + 1

end while
return 𝑠,𝑉

The algorithm dynamically customizes both the tour path and the
commentary based on real-time visitor feedback. It starts with
initial visitor preferences and the tour’s starting point, and through
continuous feedback loops, it adjusts the visitor’s experience by

updating the tour route and commentary in response to changes in
visitor preferences. The process continues until the tour reaches
its planned end, ensuring a personalized and engaging experience
throughout the visit.

Figure 3: Prompt Example for Running Tour Plan Using
SDDP

The LLM is instruct-tuned using specially designed prompts, as
illustrated in Figure 3. The prompt begins by establishing the role of
the LLMs as a tour guide, and is followed by three key instructions:

Introduction of the Plan The LLM-based guide is requested
to provide an introduction to the tour, offering visitors a
clear overview of the recommended tour plan.

Interactive Engagement The LLM-based guide is instructed
to operate according to Algorithm 1, starting from the initial
state and awaiting the visitor’s feedback at each step. This
interactive element is essential for making the tour adaptable
and personalized.

Continuous Adaptation The prompt specifies that the guide
should adapt the tour based on the visitor’s feedback. Possi-
ble actions include: following the existing route to the next
state, changing the route, or customizing the commentary.
The guide is instructed to continue until reaching the final
state as defined in Algorithm 1.

3.4 Tour Q&A Task
This task involves addressing visitor inquiries about the indoor
venue, including information on buildings, floors, and venue man-
agement rules. Fine-tuning LLMs is essential to equip them with
the necessary domain-specific knowledge to respond to visitors’
questions effectively. After this knowledge infusion, LLMs excel
at providing satisfactory Textual Q&A service concerning general
indoor information, such as floor introductions, opening hours and
events. Besides the explanatory general information, narratives of
the details of the individual exhibits constitute a crucial component
of indoor tour guiding service; however, textual descriptions often
do not convey the richness that visual representation can offer.
Thus, Multimodal Large Language Models (MLLMs) are adopted
for visual Q&A about exhibit details. Open-source MLLMs, such
as LLaVA, are recommended for executing these visual Q&A tasks.
This approach aligns with the requirements of indoor venues, which
necessitate processing domain-specific image data using private
MLLMs on local servers to ensure data safety.

During an indoor tour, current MLLMs often face a spatial-
reference issue with visual Q&A inquiries. For example, when visi-
tors ask MLLMs a common question like ’Who is this person?’ at
an image, they cannot point directly at the person as they would
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with a human tour guide. Such spatial cues are crucial for accu-
rate interpretation but are absent in digital exchanges, rendering
MLLMs incapable of effectively resolving these interactive queries.
An Object Labeling Workflow is proposed to address the spatial
reference issue as follows:

(1) Identify visual questions that involve spatial reference ambi-
guity.

(2) Employs Object Detection model to detect and label multiple
objects within different Regions of Interest (ROIs). In the con-
text of computer vision, "Region of Interest" (ROI) refers to a
specific portion of an image that is targeted for a particular
analysis or operation. When visitors ask questions related
to specific visual elements, identifying and analyzing the
appropriate ROI ensures that the responses are precise and
relevant to the queried subject matter. This is particularly
useful in dense or detailed images where multiple subjects
might be present.

(3) Upon receiving the supplementary ROI label from the visitor,
the MLLM’s inference method is activated, with inputs in-
cluding the labeled image and a consolidated question with
the ROI information.

(4) Outputs the MLLM’s inference answer for visual question
concerning the specified object.

4 CASE STUDY
In this section, we evaluate the IndoorRoaming system in two
typical indoor environments: shopping mall and museum.

4.1 Pathfinding in CF Market Mall

Figure 4: CF Market Mall Indoor Map

CF Market Mall, located in Calgary, Alberta, is one of the largest
malls in the area with different stores, restaurants, and entertain-
ment options. It serves as a shopping mall example to illustrate
how to instruct LLMs to learn an indoor layout through the Indoor
Entity Graph. Based on its indoor map shown in Figure 4, we first
extract all stores and corridors information from the map. Then the
information is represented as the 71 nodes, 17 edges and 66 turns
as shown in Figure 5. Note that the nodes of the intersection type
are labeled as Letters A to J on the indoor map.

With these spatial data, the LLM is instructed to build the indoor
entity graph, apply Dijkstra’s algorithm to calculate the shortest
route according to visitor pathfinding requests, and to generate
accurate road guidance descriptions. The instruction tuning and

Figure 5: Spatial Data of CF Market Mall

execution of the CF Market Mall pathfinding task are detailed in
Table 1. It shows that the final generated road guidance includes
accurate references along the route, based on the prompt’s few-shot
example, demonstrating the LLM’s comprehensive understanding
of indoor spatial relationships at CF Market Mall.

4.2 Tour Planning in Studio Bell Museum
The Studio Bell Museum, known as the Canadian National Music
Centre, is a museum featuring five floors of exhibitions, interactive
instrument installations, and a vast collection of musical artifacts.
It serves as an example to illustrate the LLM-based tour planning
method.

Figure 6 presents the state transitions diagram of an SDDP tour
example at the Studio Bell Museum, detailing the following steps:

(1) Music Square Entrance-Level 1: The tour enters the initial
state by starting with a welcome and tour overview com-
mentary. If the visitor follows the current plan, the system
displays the route to the next showroom.

(2) Trailblazer Showroom-Level 2: This area generates commen-
tary for State 2. If a visitor requests more interesting com-
mentary with stories, the system adapts the commentary
accordingly. Following the plan, the system shows the route
to the next showroom.

(3) Music and Wellness Showroom-Level 3: Here, the system
adapts the commentary style and generates commentary for
State 3. If the visitor wishes to bypass this level, the system
changes the route and shows the way directly to the final
state.

(4) Country Music Showroom-Level 4: Commentary for State 4
is generated. If a visitor requests country music recommen-
dations, the system provides these recommendations based
on an additional online search. If the visitor follows the plan,
it leads to the next showroom.

(5) Songwriters Showroom-Level 4: This showroom generates
commentary for State 5. If a visitor requests a summary of
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Figure 6: Example of SDDP Tour at Studio Bell Museum

the songwriters exhibition in French, the system provides a
generated summary in French.

(6) Gift Shop and Exit-Level 1: At the end of the tour, visitors
reach the final state where the tour ending commentary
is displayed. If the visitor says farewell, the output is also
farewell.

The instruction tuning and execution of a Studio Bell Museum tour
planning example are detailed in Table 2. It shows that SDDP pro-
vides a reliable framework for LLMs to perform the tour planning
task with full control over visitor progress and experience.

4.3 Tour Q&A in Studio Bell Museum
For the interactive tour Q&A, we still use the Studio Bell Museum
for our case study. As mentioned, LLaVA faced the challenge of
spatial reference in the Visual Q&A task. An example is shown
in Figure 7. To facilitate easy spatial referencing, we implemented
the proposed Object Labeling Workflow using Gradio UI [1] as the
visitor interface and Grounding DINO [5] as the object detection
model. The workflow is implemented as the following steps:

(1) Identify that the visual question in Figure 7 involves spatial
reference ambiguity.

(2) Given that the object in question is person, Grounding DINO
is applied to detect and label persons within different ROIs,
as demonstrated in Figure 8. Gradio UI displays the labeled
image and prompts the visitor to specify the ROI label as
supplementary input. Note that the actual implementation
utilizes the APIs of Grounding DINO and Gradio UI as a
backend process instead of a frontend demo as shown here.

(3) When the visitor provides supplementary ROI label input
— "red bounding box labeled with the score of 0.77", LLaVA
accurately identifies the specified individual from among
multiple persons.

Figure 7: Spatial Reference Problem in Visual Q&A

(4) With infused visual knowledge about the specified individual,
LLaVA gives a correct response that the person is Celine
Dion, a Canadian singer, as demonstrated in Figure 9.

5 EVALUATION
5.1 User Study
We evaluate the IndoorRoaming system using five common LLMs
system evaluation metrics:
• Accuracy - the number of correct responses out of 5 tests.
• Generation Quality - coherence and logical consistency of
the LLMs’ outputs.
• Response Time - speed of LLMs’ inference.
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Figure 8: Labeling Persons using Object Detection Model

Figure 9: Spatial Reference Solution in Visual Q&A

• Robustness - ability of the LLMs-based system to handle
erroneous inputs.
• User Satisfaction - overall interaction experience and utility
value of the LLMs-based system.

A user study was conducted where each tour guidance core task
was tested by nine individuals and scored from 1 (low) to 5 (high)
on the above five metrics.

5.2 Results & Findings
Quantitative user study results are presented in Figure 10. The
findings indicate:
• Pathfinding Task: Accuracy, generation quality, response
time, and user satisfaction all scored 4 or above. This demon-
strates that the Indoor Entity Graph effectively supports
LLMs in learning spatial knowledge and assistingwith pathfind-
ing. However, the robustness average score is around 3,
which indicates that careful handling of visitor error inputs
is necessary to improve the interaction experience.
• Tour Planning Task: Accuracy, generation quality, and
response time all scored 4 or above, suggesting that the State-
Driven Dynamic Planning method significantly enhances
LLM-based interactive tour planning. Despite this, one user

scored only 2 on user satisfaction, noting, “It would be bet-
ter if LLMs could automatically introduce the exhibit I was
looking at instead of requiring me to take a photo and input
it into the chatbot.”
• Visual Q&A Task: Generation quality and user satisfac-
tion both scored 4 or above, reflecting satisfactory answers
provided by LLaVA to questions about the museum. This
score also demonstrates that the Object Labelling Workflow
is helpful for users in identifying specific objects for the
visual Q&A task.

These results provide valuable insights into the strengths and
areas for improvement in the LLM-based IndoorRoaming system.

Figure 10: Evaluation Results of the User Studies

6 CONCLUSION AND FUTUREWORKS
This paper introduces IndoorRoaming, an LLM-based system to
support indoor tour guidance. The system has demonstrated its
effectiveness to perform the core indoor guidance tasks of pathfind-
ing, tour planning and tour Q&A, with designed Indoor Entity
Graph, State-driven Dynamic Planning method, and Object La-
belling Workflow. IndoorRoaming holds great promise for integra-
tion into real-world applications, marking a solid advancement in
the research domain of indoor spatial modeling and reasoning with
LLMs.

There is broad scope to refine and escalate our work across vari-
ous dimensions. First, we will enhance the multimodal capabilities
of LLMs for the indoor tour guidance tasks. This includes provid-
ing landmark visual guidance with directional signs and exploring
MLLMs’ supports for Audio Q&A in audio exhibitions. Second,
we plan to integrate with suitable hardware, such as AR device or
embodied tour guide robot, to build a comprehensive LLMs-based
tour guidance solution for indoor venues. This aims to address the
feedback from User Survey which suggested that the LLMs embody
should be able to automatically introduce the exhibit a visitor is
viewing, rather than requiring the visitor to take a photo and input
it into the chatbot to enquiry.
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Table 1: Instruction Tuning for Shopping Mall Pathfinding

Step 1:
Build
indoor
entity
graph

Input:

shopping center.json
The JSON file contains the indoor topology and distance in-
formation of a shopping center. Please build an Indoor Entity
Graph network from this JSON file. Please note that the graph
network should not only include edges in the JSON file, but
also add edged from each node to its corridor’s start and end
points whose length are already included in the JSON file.
Note that each edge should be considered both directions, i.e
from start to end and end to start.
Output:
The indoor entity graph network has been successfully built
from the provided JSON data. If you need any specific op-
erations to be performed on this graph, such as finding the
shortest path between two points, please let me know!

Step 2:
Based on
the graph
network,
calculate
the short-
est route.

Input:
Please provide the shortest route from Tim Horton to Nike
based on the generated graph network.
Output:
The shortest route from Tim Hortons to Nike based on the
graph network involves traversing the following nodes: 1
(Tim Hortons), 63, 64, 66, to 39 (Nike). The total distance for
this route is 285.0 meters.

Step 3:
instruct
LLMs to
provide
friendly
road
guidance
based
on the
shortest
path and
indoor
entity
graph

Input:
You are information desk staff in this shopping center. Please
provide friendly road guidance based on the above gener-
ated shortest route. Your road guidance should include the
detailed route, distance and turn direction at each landmark.
The ’turn direction’ guidance at every node of landmark is
based on the ’previous edge’ and ’next edge’ information of
JSON file. Note that each edge should also be considered both
directions. Here is a format example for each step in your
road guidance:
From Node * to Node *
- Reference:***
- Distance:***
- Turn:***
Output:
Here’s the detailed route from Tim Hortons to Nike, includ-
ing the closest store references at each turning landmark for
better navigation:
Starting from Tim Hortons
1. Exit Tim Hortons and head towards the junction with In-
tersection B
- Reference: You will see Tim Hortons itself as you start.
- Distance: Approximately 95 meters
- Turn: Turn right onto Corridor 2.
2. Continue from node Intersection B to Intersection C
- Reference: Safeway is nearby, helping you recognize the
turning point.
- Distance: Approximately 100 meter
- Turn: Turn left onto Corridor 3.
3. Proceed from node Intersection C to Intersection E
- Reference: Lottery Centre is the closest store you will see
before the next turn.
- Distance: Approximately 60 meters
- Turn: Turn right onto Corridor 4.
4. Follow Corridor 4 straight to Nike.
- Reference: Nike is the destination, directly on this path.
- Distance: Approximately 30 meters
- Turn: Continue straight; Nike will be on your right.
This route totals approximately 285 meters and features clear
store landmarks to guide you effectively through the shop-
ping center. Follow these directions to reach Nike easily.

Table 2: Instruction Tuning for Museum Tour Planning

Step 1: In-
struct the
LLM to
start run-
ning the
recom-
mended
tour plan
in SDDP
method

Input:

Museum Tour Plan SDDP.xlsx
You are a tour guide in this museum. Please follow the State-
driven Dynamic Planning method to run the tour plan in this
excel file: 1. introduce the complete tour plan 2. start from
the initial state, waiting for my (visitor’s) feedbacks at each
step: following existing rout to next state, or change existing
route, or customize commentary 3. perform according to my
feedback until the final state to finish the tour.
Output:
Tour Plan Introduction The tour is structured around a se-
quence of showrooms, each designed to provide an immer-
sive experience through curated commentary and guided
transitions.
Starting the Tour: We are now at the Music Square Entrance
- Level 1. I’ll begin by providing a welcome commentary.
Please let me know how you would like to proceed:
Continue following the current plan to the next state. Change
the existing route. Customize the commentary. Your feedback
will guide the next steps!

Step 2:
The visi-
tor gives
feed-
back to
proceed
with the
current
plan to
the next
step.

Input:
continue
Output:
Great, let’s proceed!
Current State: Trailblazer Showroom - Level 2 Action: I’m
generating commentary about the Trailblazer showroom,
which focuses on pioneers in various music genres and their
contributions to the evolution of music.
Next Step: After the commentary, we’ll head to the Music
and Wellness Showroom on Level 3.
Please indicate how you would like to proceed:
Follow the current plan to the next state. Change the route.
Customize the commentary for the next state or any specific
requests for this showroom.

Step 3:
The visi-
tor gives
feedback
to change
tour com-
mentary
content

Input:
change the commentary more fun with more stories
Output:
Understood! I’ll make the commentary more engaging with
stories about the trailblazers in music.
Enhanced Commentary for the Trailblazer Showroom - Level
2 In this showroom, we celebrate the bold spirits who dared
to redefine genres and inspire generations. Let me tell you
about Ella Fitzgerald, a pioneer of jazz and bebop. Ella, often
known as the "First Lady of Song," had a remarkable ability
to mimic instrumental sounds, which she showcased in her
scat singing. Her improvisational skill was so profound that
many bandleaders felt she could out-swing any instrument
in the orchestra!
Next Steps We are now ready to move on to the Music and
Wellness Showroom on Level 3. Would you like to:
Continue following the current plan to the next state?
Change the route? Further customize the commentary?

Step 4:
The visi-
tor gives
feedback
to change
tour
route

Input:
bypass all stops in Level 4
Output:
Understood! We’ll bypass all stops at Level 4 and proceed
directly to the final stage of our tour.
Updated Next State: Gift shop and exit-Level 1
Action: Proceed directly to the gift shop and the exit.
Welcome back to Level 1! As we conclude our tour, the gift
shop offers a chance to take a piece of musical history home
with you.
Let me know if there’s anything else you would like to do or
explore before we finish the tour.
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