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ABSTRACT
Due to the high cost associated with in situ water quality monitor-
ing, it is challenging to consistently identify and monitor contam-
inated bodies of water, especially for large or remote areas. High
spatiotemporal-resolution Sentinel-2 satellite images present the
opportunity to monitor water quality of different bodies of water
across long time periods through remote sensing technology. While
there exists a plethora of satellite imagery, obtaining labeled data
is extremely costly and in many cases infeasible. In this work, we
develop and evaluate AquaSent-TMMAE, a new self-supervised
learning framework based on the MAE architecture tailored to spa-
tiotemporal remote sensing data and optimized for water quality
predictions. Our experiments demonstrate that when finetuned on
a specific task using transfer learning, AquaSent-TMMAE is able
to accurately detect unsafe levels of various water contaminants,
achieving areas under the receiver operating characteristic curve
of above 0.90 on multiple downstream tasks. Our work presents an
important step toward developing a robust foundation model for
satellite imagery.
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1 INTRODUCTION
The health of aquatic ecosystems is a global concern, with water
contamination threatening both environmental sustainability and
human wellbeing [20]. Climate change is significantly disrupting
water quality. Warmer temperatures and severe storms increase
pollution, upsetting the delicate balance of our water system [28].
Furthermore, the impact of human activities on water quality is
increasing [27] as substantial amounts of chemical fertilizers and
pesticides flow into rivers [1]. Human activities such as mining
cause acid mine drainage (AMD), a harmful environmental effect
that is the main cause of polluted water in many countries around
the world for the last several decades [2]. Contaminated bodies of
water pose significant health risks to humans by serving as vec-
tors for waterborne diseases and toxic substances that can lead
to serious illnesses. Additionally, these pollutants disrupt aquatic
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ecosystems by causing habitat degradation, reducing biodiversity,
and impairing the reproductive and growth cycles of aquatic organ-
isms.

Robust water monitoring programs are paramount to addressing
the harmful effects of water contamination, both now and in the fu-
ture. Traditional monitoring approaches, like systematic sampling,
laboratory analysis, and spatial interpolation [16], are accurate but
less suited for daily use by environmental authorities. They tend
to be time-consuming, costly, and limited in their area of coverage.
As a result, traditional water monitoring programs are ineffective
at addressing the underlying issues [31].

Especially in coal mining areas, Earth remote sensing (ERS) tech-
nology offers significant advantages for environmental monitoring.
In particular, applying deep learning to imaging spectroscopy pro-
vides a powerful alternative or complement to traditional chemical
analysis methods for effectively assessing water contamination [18].
Given a large repository of labeled data, specialist convolutional
neural networks can be trained to automate the detection of water
contaminants from multispectral satellite imagery [12]. However,
while several large-scale satellite image datasets have been curated
in recent times including Functional Map of the World (fMoW) [7]
and BigEarthNet [29], annotating these datasets for specific water
contaminants requires obtaining costly laboratory analysis of water
samples at the same time the satellite image was captured. In the
field of ERS where a myriad of opportunities for automation exist,
it is practically impossible to curate labeled datasets for all tasks
and outcomes in order to train supervised models. Therefore, it is
important to develop strategies for training generalist ERS mod-
els that can be finetuned for numerous downstream tasks without
requiring the curation of large-scale labeled datasets.

In this work, we developed AquaSent-TMMAE (Aquatic Sen-
tinel Temporal Multispectral Masked AutoEncoders), a new self-
supervised generalist architecture optimized for detecting various
water contaminants from Sentinel-2 satellite imagery. We utilize
Sentinel-2 satellites (launched by ESA in 2015 and 2017) in this work
because while they offer excellent capabilities for monitoring water
contamination [18, 26], their use in this field is surprisingly under-
studied [6, 25]. These satellites provide data in 10 narrow VNIR
spectral bands with 10 and 20-meter spatial resolution. Their fre-
quent image capture (every 2-3 days in clear temperate conditions)
further enhances their potential in this space. Our contributions
are the following:

• We design a novel self-supervised learning architecture that
is optimized for learning robust visual features from spa-
tiotemporal satellite images. Our architecture builds upon
Masked Autoencoders [13] by incorporating both a temporal
and a multispectral dimension to allow the network to learn
nuanced changes in water quality.

• We curate a large dataset consisting of 3,482,319 Sentinel-2
satellite images to pretrain our network on.

• We evaluate our pretrained network (AquaSent-TMMAE) on
various downstream water contamination detection tasks
and demonstrate state-of-the-art performance when com-
pared to baselines.

• To encourage further research in the field, we release our
pretrained network, all training and statistical code, our

Band Resolution CW2 Mean Std. dev.
B1: Aerosols 60m 443nm 1412.755 672.123
B2: Blue 10m 490nm 1243.624 702.457
B3: Green 10m 560nm 1281.264 871.231
B4: Red 10m 665nm 1212.754 981.457
B5: Red Edge 1 20m 705nm 1332.325 1098.264
B5: Red Edge 2 20m 740nm 1765.526 1341.375
B5: Red Edge 3 20m 783nm 1874.375 1486.274
B8: NIR 10m 842nm 1834.246 1451.247
B8A: Red Edge 4 20m 865nm 2002.264 3681.457
B9: Water Vapor 60m 940nm 606.645 481.367
B10: Cirrus 60m 1375nm 13.654 12.346
B11: SWIR 1 20m 1610nm 1834.732 1501.574
B12: SWIR 2 20m 2190nm 1290.543 1100.745

Table 1: Metadata on our curated pretraining dataset. We
show the resolution, central wavelength, and mean and stan-
dard deviation of pixel values for each band.

large-scale pretraining dataset, and our finetuning dataset.
We hope that this will aid future work in this field.

2 MATERIALS & METHODS
2.1 Overview
Due to the limited availability of paired water quality and satellite
imagery data, conventional supervised learning methods are not
expected to yield optimal performance in predicting diverse water
quality indicators from overhead satellite imagery. [9]. However,
there does exist a plethora of unpaired (unlabeled) satellite imagery.
To utilize this unlabeled data, we develop AquaSent-TMMAE in two
stages. First, we conduct self-supervised pretraining on unlabeled
data to develop a generalist model for satellite imagery and opti-
mized our image masking method so the model can learn nuanced
water quality features. Then, we take the pretrained encoder, add a
single linear layer on top, and finetune it on various downstream
tasks in our supervised finetuning (SFT) stage using smaller, labeled
datasets. A schematic of our method is shown in Figure 1.

2.2 Pretraining Dataset Generation
To curate a pretraining dataset, we first obtain a list of latitude and
longitude pairs that correspond to bodies of water from the US
Geological Survey 1. Next, we randomly sample these coordinate
pairs, and for each point, we obtain three Sentinel-2 satellite images
of the same location captured on different dates, each consisting
of the full set of 13 Sentinel-2 frequency bands (B1-B12 and B8A).
We choose three dates randomly, spaced at least one year apart,
from the set of historical Sentinel-2 visits for that location. This
process results in the aggregation of three images per location,
totaling 3,482,319 images. See Table 1 for further details regarding
the dataset, and Table 3 for dataset counts.

2.3 Self-Supervised Pretraining
The goal of the self-supervised pretraining stage is to make use of
the large scale unlabeled dataset in order to develop a generalist
1https://www.usgs.gov
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Figure 1: Schematic of AquaSent-TMMAE. Our method combines
elements of SatMAE [8] and SiamMAE [10], with carefully designed
masking strategies across multispectral and temporal dimensions.
Once the network is pretrained, we finetune the entire network on a
smaller, labeled dataset for a specific downstream detection task.

water quality satellite imagery model that can produce meaningful
satellite image representations that can be later finetuned for many
water-quality focused downstream tasks without the need for large-
scale labeled datasets. Self-supervised learning encompasses two
primary classes of methods: contrastive methods and generative
methods [21, 23]. Contrastive methods depend on data augmenta-
tions (such as color jittering and blur), which are known to lose
spectrum information and spatial details found in satellite imagery
[11]. Thus, in this work, we leverage the benefits of generative
methods and develop a temporal multispectral masked autoencoder
(TMMAE) to learn water-quality focused ERS representations.

Masked autoencoder (MAE) [13] is a recently-developed, power-
ful self-supervised learning method that patches the input image
and attempts to reconstruct it. Motivated by MAE’s impressive
performance on various vision tasks, many studies have applied
MAE to different modalities [3–5, 14, 15, 17, 19, 22, 30]. SatMAE [8]

is an extension of MAE developed specifically for either temporal
or multispectral satellite imagery. However, this method does not
work on both temporal and multispectral data.

In our case, we aim to apply MAE to satellite imagery which
is both multispectral and temporal. The high revisit frequency of
Sentinel 2 satellites allows us also to explore using temporal satellite
images (i.e. multiple satellite images of the same coordinates over
time). The reasoning for using temporal data is that water quality
changes subtly over time, and by showing the network a satellite
image of the same location over time, it can focus on representing
the nuanced changes/features of the water quality as opposed to
the more obvious features present in a single satellite image.

To incorporate temporal data, we utilize a Siamese encoder setup
[10]. Specifically, during training, for every location in our pretrain-
ing dataset, we randomly select 2 satellite images from different
dates, and pass them through the same encoder independently as
described in [10]. By masking a large fraction of patches (95%) from
the second image and leaving the first image unchanged, we en-
courage the network to focus on representing the changes between
the two images. As proposed in [8], we apply consistent masking
across the spectral dimension. See Figure 1 for a detailed visual of
our architecture.

2.4 Supervised Finetuning Dataset Generation
Our SFT data consists of satellite images paired with binary water
quality indicator labels. In this work, we explore seven water indi-
cators: AMD, pH, conductivity, zinc, iron, manganese, and sulfate.
The AMD label is derived from the other 6 (see 2.5). Our labels
are sparse, meaning that for every satellite image, we only have
labels for some of the indicators, and most of the labels are missing.
This is because for each water sample, not all contaminants were
measured.

We curate our SFT data from three states in the United States:
California, Colorado, and Pennsylvania. We chose these states as
their bodies of water are most likely to contain high concentrations
of various water contaminants [24].

For each state, we obtain all water quality data from the US Geo-
logical Survey (USGS)Water Quality Portal 3 from 2015 through the
end of 2022. We filter the water quality data, only keeping samples
that measured at least one of our six contaminants of interest. For
each water quality data point, we obtain the satellite image (the full
set of 13 Sentinel-2 frequency bands) of the corresponding body of
water from the closest date to the date of the water sampling. We
binarize the water quality measurements based on the thresholds
in Table 2. See Table 3 for a summary of our dataset counts.

To avoid finetuning and evaluating on the same bodies of water,
we use all data from California and Colorado as our training sets,
and reserve data from Pennsylvania as evaluation data.

2.5 Acid Mine Drainage Label
In this work, one of the downstream tasks we evaluate our method
on is detecting the presence of AMD. AMD itself is not a contam-
inant that can be measured through laboratory analysis of water
samples. Instead, it generally manifests as a combination of the six

3https://www.usgs.gov/tools/water-quality-portal
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Acid mine drainage Indicator Thresholds
pH <5.5
Sulfate >250 mg/L
Conductivity >500 uS/cm
Iron >2 mg/L
Manganese >0.1 mg/L
Copper >0.02 mg/L
Zinc >0.1 mg/L

Table 2: The thresholds we used to binarize each of the indi-
cators. For example, if a measurement had a pH less than 5.5,
then it would be positive and is negative otherwise. These
measurements were obtained from the US Geological Survey
(USGS).

Dataset Total Negatives Positives
Pretraining 3,482,319 N/A N/A
AMD Train 1460 1271 189
AMD Evaluation 906 802 104
pH Train 1215 1107 108
pH Evaluation 787 703 84
Conductivity Train 1734 1426 308
Conductivity Evaluation 1053 902 152
Zinc Train 948 804 144
Zinc Evaluation 475 403 72
Iron Train 1511 1303 208
Iron Evaluation 702 601 101
Manganese Train 1233 1821 412
Manganese Evaluation 1231 1003 228
Sulfate Train 2571 2090 481
Sulfate Evaluation 1372 1090 282

Table 3: Number of images in our pretraining dataset and
number of training/evaluation examples in our SFT dataset
for each of the downstream tasks.

contaminants in this study. To derive the AMD label, we use the
following procedure:

• Obtain all the satellite images that have a label for least 3 of
the 6 indicators. Filter out all other images as they are too
sparse.

• If at least 50% of the labeled indicators are positive, then
label the image as positive for AMD.

• Otherwise, label the image as negative for AMD.

2.6 Supervised Finetuning
With a pretrained generalist network at hand, we evaluate its per-
formance on a total of seven binary downstreamwater quality tasks.
Given a satellite image containing a body of water, the tasks are
to classify (1) presence of AMD, (2) presence of unsafe amounts of
manganese, (3) presence of unsafe amounts of sulfate, (4) presence
of unsafe amounts of zinc, (5) presence of unsafe amounts of iron,
(6) low pH, and (7) high conductivity. We obtain train/evaluation
data splits for each of the downstream tasks, consisting of paired
satellite images containing a body of water and a binary label (see

Parameter value
optimizer AdamW
optimizer momentum 𝛽2, 𝛽1 = 0.95, 0.99
weight decay 0.05
learning rate 1.5e-4
epochs 1200
augmentation hflip, crop [0.5, 1]
batch size 1024
frame sampling gap [4, 48]

Table 4: AquaSent-TMMAE Pretraining Hyperparameter Set-
tings.

2.4). We use a multi-task formulation (multiple binary tasks) as
opposed to a single multiclass task because every image had only
labels for some classes, and a given image can have any number of
the classes present.

We use the same encoder from the pretraining stage and add a
single linear layer (linear probe) on top to generate the predictions.
For each of the downstream tasks, we finetune the entire network
independently, initializing from the pretrained network each time.

To evaluate performance, for each downstream task, we measure
area under the receiver operating characteristic (AUROC) on the
held-out evaluation split of the data for that task.

2.7 Additional Training Details
We follow the training settings in [13] and we develop our im-
plementation in PyTorch, building on top of the open-source im-
plementation of MAEs (https://github.com/facebookresearch/mae).
We use the same parameters specified in [13], unless otherwise
specified in Table 4. We train all experiments on 4 Nvidia V100
GPUs.

3 RESULTS
Our results on the downstream water quality tasks are presented in
Figure 2. AquaSent-TMMAE achieves high AUROCs with 3 tasks
above 0.90 and at least 0.83 on all tasks except the presence of unsafe
levels of zinc, where it achieves an AUROC of 0.74. Ablation study
results comparing AquaSent-TMMAE to baselines and other design
choices is shown in Table 6. Briefly, AquaSent-TMMAE outperforms
all baselines, with the closest method being the use of independent
spectral masking.

The sensitivity and specificity of AquaSent-TMMAE at a specific
threshold are shown in Table 5.

To qualitatively understand the discriminative capabilities of
the encoder after finetuning on the task of AMD classification, we
take the embeddings outputted from the finetuned encoder (1408-
dimension) and downsample to a two-dimensional space using
principal component analysis. We visualize the resultant latent
space embeddings in Figure 3. The encoder can clearly discriminate
between satellite images of bodies of water contaminated by AMD
and satellite images of bodies of water that are not contaminated
by AMD.
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Figure 2: The area under the receiver operating characteristic curves
for all seven binary downstream tasks on the held-outevaluation
splits.

Figure 3: A visual representation of the embeddings (output of the
finetuned encoder) after being reduced to two dimensions.

Metric Value (Threshold: 0.47)
Sensitivity 90.59
Specificity 77.94

Table 5: Sensitivity and Specificity of AquaSent-TMMAE on
the task of detecing AMD.

Method Average AUROC
AquaSent-TMMAE 0.8641
Traditional Supervised Learning 0.5960
No Temporal Masking 0.7930
Independent Spectral Masking 0.8481
No Finetuning 0.8372
SatMAE [8] 0.8213

Table 6: Performance comparison of the various baselines
and design decisions. across seven downstream tasks. We
conducted an ablation study of various design options before
arriving at AquaSent-TMMAE. Average AUROC is evaluated
across the seven downstream tasks.

4 BASELINES & ABLATION STUDY
In developing AquaSent-TMMAE, we performed ablation studies of
different design choices and baselines. Results are shown in Table 6.
To ensure a fair comparison across the methods, we kept all other
aspects (i.e. model architecture, hyperparameter sweep strategy,
datasets) consistent. Here are the following variations we explored
in this work:

• Traditional Supervised Learning: Here, we do not pretrain
the network and simply just train it on the labeled data for
the specific task.

• No Temporal Masking: Instead of using Siamese encoders in
the pretraining stage and having a temporal dimension, we
use a vanilla MAE with consistent masking across the spec-
tral dimension. Performance is substantially worse, demon-
strating the benefit of having a temporal dimension, which
forces the network to focus its representations on the changes
of the satellite image between dates.

• Independent Spectral Masking: Instead of applying consistent
masking on the spectral dimension (as proposed in [8]), this
approach uses independent masking, as defined in [8]. We
note that performance is marginally lower than consistent
masking.

• No Finetuning: Instead of finetuning the entire encoder for
each downstream task, this approach freezes the weights of
the encoders and only trains the linear layer (linear probing).

• SatMAE [8] : As described in the paper, this approach uses
temporal but not multispectral masking. This shows the ben-
efit of having a multispectral dimension, since performance
is worse without it.

5 CONCLUSION
The use of remote sensing for water quality monitoring presents a
monumental opportunity to safeguard our water resources and pro-
mote environmental sustainability. While there has been a plethora
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Original
Image
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Figure 4: Reconstruction quality of AquaSent-TMMAE. The top row
shows the original images, and the bottom row shows AquaSent-
TMMAE’s reconstructed images.

of prior work on developing computer vision algorithms for pre-
dictive tasks from satellite imagery, there is little prior work specif-
ically for water quality prediction, largely because of the lack of
labeled datasets. In this work, we propose a new self-supervised
learning framework based on the MAE architecture tailored to mul-
tipsectral, temporal remote-sensing data and optimized for water
quality predictions. Our novel masking strategy in a joint temporal
and spectral space enables AquaSent-TMMAE to learn meaning-
ful representations. Our experiments on seven downstream water
quality prediction tasks demonstrate the effectiveness of AquaSent-
TMMAE.

Because all downstream water quality tasks achieved an AUROC
of 0.83 or greater except zinc, which achieved an AUROC of 0.74,
our work has shown the promising potential of automating water
quality monitoring using deep learning on satellite imagery. Fur-
ther research could include running an ablation study to generate
even more data using image augmentation techniques to test the
model’s consistency in detecting unsafe water. In addition, a system
of satellite water safety detection paired with physical on-site tests
has numerous advantages to current detection techniques, namely
faster detection, avoiding blindsights, and the idea that overdetec-
tion is better than underdetection when regarding water safety. It
would also be advantageous to expand our research beyond the
realm of water quality and develop a more general foundational
model for remote sensing data.
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